Total Synthesis of (-)-Martinellic Acid via Radical Addition-Cyclization-Elimination Reaction

Atsushi Shirai, ${ }^{\dagger}$ Okiko Miyata, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ Norimitsu Tohnai, ${ }^{\ddagger}$ Mikiji Miyata, ${ }^{\dagger}$ David J. Procter,${ }^{\S}$ David Sucunza, ${ }^{\text {s }}$ and Takeaki Naito*, \uparrow
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan, and School of Chemistry, Oxford Road, The University of Manchester, Manchester, M13 9PL, United Kingdom taknaito@kobepharma-u.ac.jp

Received December 17, 2007

The asymmetric total synthesis of martinellic acid, the first pyrrolo[3,2-c]quinoline alkaloid found in nature, is described. Three key steps in our synthesis of $(-)$-martinellic acid are the $\mathrm{Bu}_{3} \mathrm{SnH}$-promoted radical addition-cyclization-elimination (RACE) reaction of an oxime ether with an α, β-unsaturated ester to generate the pyrrolo[3,2-c]quinoline core, a chemoselective lactam carbonyl reduction, and guanidinylation under Mitsunobu reaction conditions. The key radical cyclization has also been investigated by using SmI_{2}. (-)-Martinellic acid was synthesized from commercially available methyl 4-bromo-3methylbenzoate in fewer steps than previous syntheses and in an improved overall yield.

The martinella alkaloids were isolated in 1995 by Merck Research Laboratories from the root bark of the tropical plant Martinella iquitosensis and were found to be a new class of pyrroloquinoline alkaloid (Figure 1). ${ }^{1}$ The structures involving relative configurations were firmly established by the spectral data but the absolute configurations were not determined. ${ }^{1}$ The plant extracts have been used as an eye medication in over 13 different ethnolinguistic groups from eight South American countries. ${ }^{2}$ These alkaloids were found to possess antibacterial activity as well as affinity for adrenergic, muscarinic, and bradykinin receptors. Furthermore, these are the first examples of nonpeptidic compounds to be identified as bradykinin receptor antagonists.

Over the past decade, considerable effort has been devoted to the synthesis of the martinella alkaloids. ${ }^{3-11}$ The pyrrolo[3,2c]quinoline core of the martinella alkaloids has been prepared by several synthetic routes including the imino Diels-Alder reaction of 2-pyrroline and an N -arylimine, ${ }^{6}$ the inter- and

[^0]

FIGURE 1. Martinellic acid (1a) and martinelline (1b).
intramolecular 1,3-dipolar cycloadditions of azomethine ylides to olefins, ${ }^{7}$ Heck reactions under palladium catalysis, ${ }^{8}$ intramolecular radical cyclizations between aryl iodides and pyrroles, ${ }^{9}$ Fischer-type cycloaddition,,${ }^{10}$ and others. ${ }^{11}$

The first asymmetric total synthesis of martinellic acid (1a) was reported by the group of $\mathrm{Ma},{ }^{5 \mathrm{~d}, \mathrm{e}}$ who employed a CuIcatalyzed coupling reaction of a β-amino ester with 1,4 -diiodobenzene and a guanylation of a secondary amine under mild conditions as the key steps. In 2007, Iwabuchi reported syntheses of both enantiomers of martinellic acid (1a) and martinelline (1b)

[^1]employing a tandem Mukaiyama-Mannich reaction/aminal cyclization as a key step. ${ }^{5 f}$ Interestingly, all the synthetic samples of the natural product exhibit optical rotation values that are different from that reported for the isolated natural product. More recently, Lovely has reported the asymmetric synthesis of (-)-martinellic acid (1a) using an intramolecular $[3+2]$ azomethine ylide-alkene cyclization as a key reaction. Again, the optical rotation of the final product was ambiguous. ${ }^{5 g}$

As part of our studies on the stannyl radical addition-cyclization reactions of imine derivatives, ${ }^{12}$ we have recently developed the radical addition-cyclization-elimination (RACE) reactions of oxime ethers with α, β-unsaturated esters. ${ }^{12 \mathrm{~m}}$ In this article,
(4) (a) Hadden, M.; Nieuwenhuyzen, M.; Potts, D.; Stevenson, P. J.; Thompson, N.; Walker, D. A. Tetrahedron 2006, 62, 3977-3984. (b) Hadden, M.; Nieuwenhuyzen, M.; Osborne, D.; Stevenson, P. J.; Thompson, N. Tetrahedron Lett. 2001, 42, 6417-6419. (c) He, Y.; Moningka, R.; Mahmud, H.; Lovely, C. J. Tetrahedron Lett. 2005, 46, 1251-1254. (d) He, Y.; Mahmud, H.; Moningka, R.; Lovely, C. J.; Dias, H. V. R. Tetrahedron 2006, 62, $8755-$ 8769. (e) Takeda, Y.; Nakabayashi, T.; Shirai, A.; Fukumoto, D.; Kiguchi, T.; Naito, T. Tetrahedron Lett. 2004, 45, 3481-3484. (f) Miyata, O.; Shirai, A.; Yoshino, S.; Takeda, Y.; Sugiura, M.; Naito, T. Synlett 2006, 893-896. (g) He, Y.; Moningka, R.; Mahmud, H.; Lovely, C. J. Tetrahedron Lett. 2005, 46, 12511254.
(5) (a) Powell, D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913-2916. (b) Snider, B. B.; Ahn, Y.; O'Hare, S. M. Org. Lett. 2001, 3, 4217-4220. (c) Xia, C.; Heng, L.; Ma, D. Tetrahedron Lett. 2002, 43, 9405-9409. (d) Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189-2191. (e) Ma, D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J. Org. Chem. 2003, 68, 442-451. (f) Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem Commun. 2007, 504-506. (g) Badarinarayana, V.; Lovely, C. J. Tetrahedron Lett. 2007, 48, 2607-2610.
(6) (a) Batey, R. A.; Simoncic, P. D.; Lin, D.; Smyj, R. P.; Lough, A. J. Chem Commun. 1999, 651-652. (b) Hadden, M.; Stevenson, P. J. Tetrahedron Lett. 1999, 40, 1215-1218. (c) Hadden, M.; Nieuwenhuyzen, M.; Potts, D.; Stevenson, P. J.; Thompson, N. Tetrahedron 2001, 57, 5615-5624. (d) Batey, R. A.; Powell, D. A. Chem. Commun. 2001, 2362-2363. (e) Malassene, R.; Sanchez-Bajo, L.; Toupet, L.; Hurvois, J.-P.; Moinet, C. Synlett 2002, 15001504. (f) Yadav, J. S.; Subba, R. B. V.; Sunitha, V.; Srinivasa, R. K.; Ramakrishna, K. V. S. Tetrahedron Lett. 2004, 45, 7947-7950.
(7) (a) Lovely, C. J.; Mahmud, H. Tetrahedron Lett. 1999, 40, 2079-2082. (b) Snider, B. B.; Ahn, Y.; Foxman, B. M. Tetrahedron Lett. 1999, 40, 33393342. (c) Nyerges, M.; Fejes, I.; Toke, L. Tetrahedron Lett. 2000, 41, 79517954. (d) Snider, B. B.; O'Hare, S. M. Tetrahedron Lett. 2001, 42, 2455-2458. (e) Mahmud, H.; Lovely, C. J.; Dias, H. V. R. Tetrahedron 2001, 57, $4095-$ 4105. (f) He, Y.; Mahmud, H.; Wayland, B. R.; Dias, H. V. R.; Lovely, C. J. Tetrahedron Lett. 2002, 43, 1171-11774. (g) Nyerges, M.; Fejes, I.; Toke, L. Synthesis 2002, 1823-1828.
(8) Gurjar, M. K.; Pal, S.; Rama Rao, A. V. Heterocycles 1997, 45, 231234.

(9) Ho, T. C. T.; Jones, K. Tetrahedron 1997, 53, 8287-8294.

(10) (a) Parrick, J.; Wilcox, R. J. Chem. Soc., Perkin Trans. 1 1976, 21212125. (b) Khan, M. A.; da Rocha, J. F. J. Heterocycl. Chem. 1978, 15, $913-$ 921. (c) Park, K. K.; Rapoport, H. J. Heterocycl. Chem. 1992, 29, 1031-1032. (d) Heidempergher, F.; Pevarello, P.; Pillan, A.; Pinciroli, V.; Della Torre, A.; Speciale, C.; Marconi, M.; Cini, M.; Toma, S.; Greco, F.; Varasi, M. Farmaco 1999, 54, 152-160. (e) Dudouit, F.; Houssin, R.; Hénichart, J.-P. J. Heterocycl. Chem. 2001, 38, 755-758.
(11) (a) Frank, K. E.; Aubé, J. J. Org. Chem. 2000, 65, 655-666. (b) Nieman, J. A.; Ennis, M. D. Org. Lett. 2000, 2, 1395-1397. (c) Hamada, Y.; Kunimune, I.; Hara, O. Heterocycles 2002, 56, 97-100. (d) Hara, O.; Sugimoto, K.; Makino, K.; Hamada, Y. Synlett 2004, 1625-1627. (e) Hara, O.; Sugimoto, K.; Makino, K.; Hamada, Y. Tetrahedron 2004, 60, 9381-9390. (f) Shaw, J. T.; Masse, C. E.; Ng, P. Y. Org. Lett. 2006, 8, 3999-4002. (g) Zhang, Z.; Zhang, Q.; Yan, Z.; Liu, Q. J. Org. Chem. 2007, 72, 9808-9810.
(12) (a) Naito, T.; Nakagawa, K.; Nakamura, T.; Kasei, A.; Ninomiya, I.; Kiguchi, T. J. Org. Chem. 1999, 64, 2003-2009. (b) Naito, T.; Tajiri, K.; Harimoto, T.; Ninomiya, I.; Kiguchi, T. Tetrahedron Lett. 1994, 35, 2205-2206. (c) Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito, T. J. Org. Chem. 1998, 63, 4397-4407. (d) Miyabe, H.; Torieda, M.; Ninomiya, I.; Kiguchi, T.; Naito, T. Synlett 1997, 580-582. (e) Naito, T.; Torieda, M.; Tajiri, K.; Ninomiya, I.; Kiguchi, T. Chem. Pharm. Bull. 1996, 44, 624-626. (f) Naito, T.; Fukumoto, D.; Takebayashi, K.; Kiguchi, T. Heterocycles 1999, 51, 489-492. (g) Miyabe, H.; Kanehira, S.; Kume, K.; Kandori, H.; Naito, T. Tetrahedron 1998, 54, 5883-5892. (h) Kiguchi, T.; Ozaki, M.; Naito, T. Heterocycles 1999, 51, 2711-2722. (i) Kiguchi, T.; Tajiri, K.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 5819-5833. (j) Naito, T.; Nair, J. S.; Nishiki, A.; Yamashita, K.; Kiguchi, T. Heterocycles 2000, 53, 2611-2615. (k) Miyabe, H.; Tanaka, H.; Naito, T. Chem. Pharm. Bull. 2004, 52, 74-78. (1) Miyabe, H.; Nishiki, A.; Naito, T. Chem. Pharm. Bull. 2003, 51, 100-103. (m) Miyata, O.; Shirai, A.; Yoshino, S.; Nakabayashi, T.; Takeda, Y.; Kiguchi, T.; Fukumoto, D.; Ueda, M.; Naito, T. Tetrahedron 2007, 63, 10092-10117.

SCHEME 1

we describe in detail an asymmetric total synthesis of martinellic acid (1a) based on the RACE reaction of a chiral oxime ether 5b. ${ }^{4 \mathrm{f}}$

Results and Discussion

Our retrosynthetic analysis of (-)-martinellic acid (1a) is outlined in Scheme 1. We envisaged that martinellic acid (1a) could be derived from pyrroloquinolines $\mathbf{2}$ and $\mathbf{3}$ by introduction of the guanidine moiety and hydrolysis of an ester group. We proposed that the intermediates $\mathbf{2}$ and $\mathbf{3}$ would be produced by diastereoselective RACE reactions of oxime ethers 4 and 5, in which the diastereroselectivity of the reactions would be controlled by the stereocenter bearing the R^{2} group. The oxime ethers 4 and 5 would be prepared by reaction of either $\mathbf{6}^{12 \mathrm{~m}}$ or 7 with the unsaturated esters 8 .

The oxime ether $\mathbf{4}$ bearing an alkyl chain at the allylic position was chosen for preliminary studies on the proposed RACE reaction (Scheme 2). Benzyl alcohol 9 was prepared from commercially available methyl anthranilate according to the reported procedure. ${ }^{13}$ Oxidation of benzyl alcohol 9 with use of MnO_{2} followed by treatment of the resulting aldehyde with benzyloxyamine hydrochloride in the presence of sodium acetate gave oxime ether $6 .{ }^{12 \mathrm{~m}}$ The Wittig reaction of 2,3-dihydroxypyran $10{ }^{14}$ with (carbethoxymethylene)triphenylphosphorane, followed by protection of the diol intermediate with TBSCl provided monoalcohol 11 in 60% yield for 2 steps. The Mitsunobu reaction of sulfonamide $\mathbf{6}$ with alcohol 11 proceeded smoothly under standard conditions ${ }^{15}$ to provide N-allyl sulfonamide 4 in 49\% yield.

We next investigated the RACE reaction of 4 under standard conditions (Scheme 3). Treatment of oxime ether 4 with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing benzene gave pyrroloquinolines $2 \mathbf{2}-\mathbf{c}$ in a 15:11:1 ratio. In all cases, the N-benzyloxy group was lost during the cyclization. ${ }^{12 \mathrm{~m}}$ Isomers $\mathbf{2 a}-\mathbf{c}$ were readily separated by column chromatography. ${ }^{16}$ Unfortunately, the cyclization

[^2]
SCHEME 2

SCHEME 3

2a : 30\% (3a-H; $\beta, 4-\mathrm{H} ; \alpha, 9 \mathrm{~b}-\mathrm{H} ; \alpha$)
2b: 22\% (3a-H; $\alpha, 4-\mathrm{H} ; \beta, 9 b-H ; \alpha)$
2c : 2% (3a-H; $\alpha, 4-H ; \alpha, 9 b-H ; \alpha)$
proceeded with low diastereoselectivity and the desired diastereomer 2b was isolated as a minor product.

We next turned our attention to the RACE reaction of oxime ethers 5a,b bearing a 2-pyrrolidone moiety (Schemes 4 and 5). Initially, treatment of the commercially available 2-bromobenzaldehyde 13a with benzyloxyamine hydrochloride in the presence of sodium acetate gave oxime ether 7a. Palladiumcatalyzed cross-coupling ${ }^{17,18 \mathrm{a}, \mathrm{b}}$ of bromobenzene 7a with Lpyroglutamic acid ethyl ester ${ }^{19}$ gave anilide 14a in 99% yield. This coupling reaction proceeded in moderate yield when copper iodide was used instead of the palladium catalyst. ${ }^{18 c}$ The ester group in 14a was reduced to the corresponding alcohol followed by Swern oxidation to give the aldehyde. The resulting aldehyde was treated with (carbethoxymethylene)triphenylphosphorane to give the α, β-unsaturated ester 5a in 87% yield for 3 steps.
Under standard stannyl radical reaction conditions, the RACE reaction of 5a proceeded smoothly to provide dipyrroloquinolines $\mathbf{3 a A}-\mathbf{a D}$ (17:6:5:3), amino ester 15a, and N-benzyloxydipyrroloquinoline 16a. A major product of the reaction was the desired $3 \mathrm{a} S, 3 \mathrm{~b} S, 11 \mathrm{~b} S$-dipyrroloquinoline $\mathbf{3 a A}(33 \%)$. On the basis of the promising preliminary results, we next investigated the RACE reaction of oxime ether $\mathbf{5 b}$ bearing an ester group on the benzene ring (Schemes 4 and 5). The preparation of the requisite oxime ether $\mathbf{5 b}$ began with commercially available methyl 4-bromo-3-methylbenzoate 12. Benzylic bromination of

[^3]12 provided the benzyl dibromide in quantitative yield. The benzyl dibromide was then treated with AgNO_{3} in acetone and $\mathrm{H}_{2} \mathrm{O}$ to give aldehyde 13b, which was converted to $\mathbf{5 b}$ by using a similar route to that described for the preparation of $\mathbf{5 a}$. We next carried out the RACE reaction of $\mathbf{5 b}$, which proceeded smoothly to give the desired $3 \mathrm{a} S, 3 \mathrm{~b} S, 11 \mathrm{~b} S$-dipyrroloquinoline 3bA as a major product (29%) and its stereoisomers 3bB-bD in 45% combined yield (3bA:3bB:3bC:3bD $=7: 2: 1: 1$). Although side products were obtained in addition to the desired products $\mathbf{3 a A}$ and $\mathbf{3 b A}$, the RACE reaction of both $\mathbf{5 a}$ and $\mathbf{5 b}$ allowed the desired products $\mathbf{3 a A}$ and $\mathbf{3 b A}$ to be isolated easily as colorless crystalline solids from the reaction mixture after the radical cyclization.

The radical cyclization of $\mathbf{5 b}$ was also investigated with use of $\mathrm{SmI}_{2}{ }^{20}$ as an alternative to $\mathrm{Bu}_{3} \mathrm{SnH}$. While oxime-carbonyl cyclizations with SmI_{2} are well-precedented in target synthesis, ${ }^{12 c, d, h, 21}$ oxime-alkene cyclizations have received little attention. ${ }^{22}$ Treatment of $\mathbf{5 b}$ with SmI_{2} in THF with t - BuOH as a proton source gave a $4: 1$ diastereoisomeric mixture of $\mathbf{3 b A}$: 3bB in addition to minor byproduct. 3bA was isolated in 41% yield. Thus, the cyclization with SmI_{2} gives an improved yield of $\mathbf{3 b A}(41 \%)$ when compared to the Sn -mediated reaction (29\%).
The stereochemistry of the products $\mathbf{3 a A}$ and $\mathbf{3 b A}$ was established by X-ray crystallography and that of 2b was determined by the transformations shown in Scheme 6. Detosylation of $\mathbf{2 b}$ with magnesium in the presence of ammonium chloride gave $\mathbf{1 7}$ that was identical with the sample derived from 3aA (Scheme 6). The relative stereochemistry of the isomers $\mathbf{2 a}$ and $\mathbf{2 c}$ was deduced from comparison of their ${ }^{1} \mathrm{H}$ NMR spectra and NOE data with those of $\mathbf{2 b}$.

The structure of the isomers $\mathbf{3 a B}-\mathbf{a D}$ and $\mathbf{3 b B}-\mathbf{b D}$ was deduced from comparison of ${ }^{1} \mathrm{H}$ NMR spectra and NOE data with those of $\mathbf{3 a A}$ and $\mathbf{3 b A}$.

Our explanation of the stereoselectivity of the Sn -mediated RACE reactions is shown in Scheme 7. In the (α-stannylamino)benzyl radical, formed by the addition of stannyl radical to oxime ether $\mathbf{4}, \mathrm{A}^{1,3}$-strain gives rise to the prefered conformations \mathbf{A} and \mathbf{B}, of which anti-transition structure \mathbf{A} is favored

[^4]
SCHEME 4

SCHEME 5

5b: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
Sml_{2}
THF
3bA : 3bB (4:1)
3bA 41\%

15a: 12\%
15b: 8\%

16a: 2\%
16b: 2\%

SCHEME 6

over B, which involves unfavorable interactions between the ester and alkoxyaminostannane. Prefered transition structure A leads to the formation of $\mathbf{2 a}$. Cyclic oxime ethers 5a,b give $\mathbf{3 a A}$ or $\mathbf{3 b A}$ as major products via prefered syn-transition structure \mathbf{C} as the corresponding anti-transition structure \mathbf{D} is disfavored due to steric repulsion between the alkoxyaminostannane and pyrrolidone moiety. This interaction overrides the usual anti-selectivity of the RACE cyclization (Scheme 7).

While the mechanism of the SmI_{2}-mediated RACE reaction for a benzaldehyde-derived oxime ether is unclear, ${ }^{22}$ it is reasonable to invoke the cyclization of an α-aza radical complexed to samarium(III) (Scheme 8).

We next investigated systematic study on the selective reduction both of tert- N-aryllactam in the C-ring of $\mathbf{3 b A}$ to amino alcohol and of sec-NH-lactam in the A ring to cyclic amine without reduction of the ester group (Scheme 9). Treatment of $\mathbf{3 b A}$ with borane reagents such as 9 -BBN, BMS
(borane dimethyl sulfide complex), and disiamylborane gave only a complex mixture. It is known that the selective reduction of lactams to cyclic amines proceeds smoothly even in the presence of an ester moiety. However, it seems hard to prepare the corresponding amino alcohol by the selective reduction of lactams carrying an ester group.

Soai ${ }^{23}$ has reported that upon treatment with LiBH_{4} in the presence of MeOH in THF, primary and tertiary amides gave the corresponding primary amines and two products of secondary amines and alcohols, respectively, in which the latter two products would be formed as the result of carbon-nitrogen bond cleavage of the hemiaminal intermediate. His group has also reported that reduction of the secondary amides was not observed under the same reaction conditions but esters also were easily reduced by using LiBH_{4} and MeOH in $\mathrm{Et}_{2} \mathrm{O}$. Thus, in our case, the secondary lactam in the A-ring is not expected to be reduced but the lactam carbonyl in the C-ring and ester carbonyl groups would be reduced under the Soai reaction conditions. However, we expected that the lactam carbonyl group in the C-ring would be more activated by the ester group in the para position to undergo C-ring opening due to higher reactivity of the lactam carbonyl than that of the ester group. Thus, we did a systematic study on the selective reduction of dipyrroloquinoline 3bA bearing both ester and two types of N -substituted lactam carbonyl groups (Scheme 10; Table 1).

Treatment of dipyrroloquinoline $\mathbf{3 b A}$ with LiBH_{4} in THF in the presence of MeOH at room temperature gave the benzyl alcohol $20(67 \%)$ as a major product in addition to the desired amino alcohol 19 (30\%) (entry 1). We found that the reaction

[^5]
SCHEME 7

SCHEME 8

SCHEME 9

temperature plays a critical role in the formation of the desired product 19 , which was obtained in 76% yield at $66^{\circ} \mathrm{C}$ (entry 2). Unfortunately, further higher temperature $\left(90^{\circ} \mathrm{C}\right)$ decreased the yield of 19 (entry 3).

Thus, we succeeded in the reductive ring opening reaction of the N-arylpyrrolidinone part in $\mathbf{3 b A}$ with $\mathrm{LiBH}_{4}-\mathrm{MeOH}-$ THF at $66^{\circ} \mathrm{C}$, which provided selectively desired amino alcohol 19 without the reduction of an ester group.

Finally, again the selective reduction of NH-lactam in the A-ring of $\mathbf{1 9}$ with $\mathrm{BH}_{3} \cdot$ THF gave the desired cyclic amine $\mathbf{1 8}$ (Scheme 11).
The amino alcohol $\mathbf{1 8}$ was converted into the trifluoroacetamide $22 \mathrm{a}^{5 \mathrm{~d}, \mathrm{e}}$ and tri-Troc compound 21 under standard conditions. To convert 21 into alcohol 22b, we examined selective deprotection of the carbonate moiety (Scheme 11; Table 2). The treatment of 21 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5 equiv) in MeOH gave methyl carbamate 23 (entry 2) while only 21 was recovered under the acidic conditions (entry 1). The selective deprotection of the carbonate group proceeded smoothly in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv) in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (20:1) to give the desired product

SCHEME 10

Table 1. Chemoselective Reduction of 3bA

			yield $(\%)^{a}$	
entry	solvent	temp $\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{1 9}$	$\mathbf{2 0}$
1	THF	rt	30	67
2	THF	66	76	17
3	diglyme	90	25	19

${ }^{a}$ Isolated yields.

22b in good yield without formation of the methyl carbamate 23 (entry 3).

As methods for the introduction of the guanidine moiety typically proceed in moderate yield and require multistep sequences, ${ }^{5 \mathrm{c}-\mathrm{g}}$ we explored a shorter route involving a Mitsunobu reaction.

In our preliminary study, we used tetrahydroquinolines 24a-c as substrates to evaluate our proposed method for introduction of the guanidine group (Scheme 12; Table 3). The amino group of 24a, prepared by the reduction of 3,3a,4,5-tetrahydropyrrolo[1,2-c]quinolin-1-one ${ }^{24}$ with LiBH_{4}, was protected by the treatment with trifluoroacetic anhydride (TFAA) or 2,2,2-trichloroethoxycarbonyl chloride (TrocCl) to give 24b and $\mathbf{2 4 c}$, respectively. Our first

[^6]
SCHEME 11

TABLE 2. Selective Deprotection of Troc Carbonate of 21

			yield (\%)		
entry	reagent	solvent	22b	$\mathbf{2 3}$	21
1	TFA (1 equiv)	MeOH			quant.
2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$ (5 equiv)	MeOH		67	
3	$\mathrm{~K}_{2} \mathrm{CO}_{3}$ (1.5 equiv)	$\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$	87		
${ }^{a}$ Isolated yields.					

attempt of direct preparation of 27a from 24a via the route involving the Mitsunobu reaction using N, N^{\prime}-bis(tert-butoxycar-bonyl)- $N^{\prime \prime}$-prenylguanidine $\mathbf{2 5 a}{ }^{25}$ as a nucleophile was unsuccessful and only undesired $\mathbf{2 8}^{26}$ was obtained in 68% yield as a result of intramolecular reaction (entry 1). Under the same reaction conditions, 24b gave the complex mixture (entry 2).

Kim has reported Mitsunobu reactions using isothiourea as a nucleophile. ${ }^{27}$ According to his procedure, treatment of 24b with isothiourea 25b, DEAD, and $\mathrm{Ph}_{3} \mathrm{P}$ in THF at room temperature gave 26b in 88% yield (entry 3). The subsequent reaction of $\mathbf{2 6 b}$ with prenylamine ${ }^{28}$ proceeded at room temperature to afford N-Boc-protected guanidine 27b in 93% yield. In the case of the Mitsunobu reaction employing DIAD, a similar chemical yield (92%) was obtained (entry 4). Furthermore, we tested the Mitsunobu reaction of N-Troc tetrahydroquinoline 24c and obtained $\mathbf{2 6 c}$ in moderate yield (entries 5 and 6). 26c was also treated with prenylamine to afford N -Boc-protected guanidine 27c in 83% yield (Scheme 12). Quinoline compounds, such as $\mathbf{2 7 b}$ and 27 c, containing a guanidine group are known to exhibit bradykinin antagonist activity as well as activity with the α-adrenergic, histaminergic, and muscarinic receptors. ${ }^{29}$

On the basis of the preliminary results from our model studies, we investigated the use of the Mitsunobu reaction for the

[^7]introduction of the guanidine moiety to alcohol 22a bearing two trifluoroacetyl groups (Scheme 13). Trifluoroacetamide 22a was first subjected to the Mitsunobu reaction with use of isothiourea 25b, DIAD, and $\mathrm{Ph}_{3} \mathrm{P}$. Unfortunately, the desired product 29a was formed in only moderate yield (44\%) and N-deprotected aniline 30a was also isolated in 17% yield (Scheme 13). The attempted introduction of a guanidine group to aniline 30a was unsuccessful and starting material was recovered in 61% yield.

The synthesis of (-)-martinellic acid was completed as shown in Scheme 14. The addition-elimination reaction of isothiourea 29a with prenylamine ${ }^{28}$ proceeded to afford the N-Boc guanidine 31a in addition to 31'a. To install the second guanidine moiety at the $\mathrm{N}(1)$-position, treatment of a mixture of 31a and 31'a with $\mathrm{K}_{2} \mathrm{CO}_{3}$ followed by isothiourea $32,{ }^{5}$ in the presence of HgCl_{2}, gave bisguanidine 33a in excellent yield. The spectral data of 33a were identical with those of an authentic sample reported in the literature. ${ }^{5-g}$ Removal of one Boc group would appear to occur during treatment with $\mathrm{K}_{2} \mathrm{CO}_{3} .{ }^{5 \mathrm{a}}$ Finally, hydrolysis of the methyl ester and removal of the two Boc groups of 33a, followed by HPLC purification (C18 silica gel, $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) gave (-)-martinellic acid (1a) as its bistrifluoroacetate salt in 56% yield for 2 steps. The low yield (44%) observed in conversion of 22a into 29a led us to investigate an improved synthesis of $(-)$-martinellic acid using $\mathbf{2 2 b}$, bearing Troc protection as a substrate for the introduction of a guanidino group. The Mitsunobu reaction of N-Troc carbamate 22b proceeded smoothly to give the desired product 29b in 96% yield (Scheme 13). The isothiourea 29b was then converted to 33b by treatment with prenylamine, ${ }^{28}$ deprotection of the Troc group, and introduction of the guanidino group (Scheme 14). Finally, 33b was subjected to hydrolysis and deprotection to give (-)-martinellic acid (1a).

Ma, Iwabuchi, and Lovely have shown that the transformation of alcohols 22 to the desired product 33a, bearing two guanidino groups, proceeded in $28-50 \%$ yields over 5 steps. ${ }^{5 \mathrm{c}-\mathrm{g}}$ In contrast, our synthesis of $\mathbf{3 3 b}$ was achieved in 4 steps and in 62% overall yield from 22b.

Synthetic martinellic acid (1a) was shown to be identical with natural martinellic acid by direct comparison of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra provided by Drs. Sheo Bux Singh and Steven

SCHEME 12

TABLE 3. Introduction of Guanidine Moiety by Using a Mitsunobu Reaction ${ }^{a}$

entry	substrate	nucleophile	conditions	yield $(\%)^{b}$
1	$\mathbf{2 4 a}$	$\mathbf{2 5 a}$	DEAD, toluene	$-^{c}$
2	$\mathbf{2 4 b}$	$\mathbf{2 5 a}$	DEAD, toluene	$-^{d}$
3	$\mathbf{2 4 b}$	$\mathbf{2 5 b}$	DEAD, THF	88
4	$\mathbf{2 4 b}$	$\mathbf{2 5 b}$	DIAD, THF	92
5	$\mathbf{2 4 c}$	$\mathbf{2 5 b}$	DEAD, THF	61
6	$\mathbf{2 4 c}$	$\mathbf{2 5 b}$	DIAD, THF	66

${ }^{a}$ Reaction conditions: nucleophile (1.0 equiv), azodicarboxylate (1.5 equiv), $\mathrm{Ph}_{3} \mathrm{P}$ (1.5 equiv) in solvent at room temperature. ${ }^{b}$ Isolated yields. ${ }^{\text {c }}$ Intramolecular cyclization product 28 was isolated in 68% yield. ${ }^{d}$ Complex mixture was observed. DEAD $=$ diethyl azodicarboxylate. DIAD $=$ diisopropyl azodicarboxylate.
M. Pitzenberger of Merck Research Laboratories. ${ }^{30}$ However, there is again a discrepancy between the optical rotation of the alkaloid isolated from natural sources and our synthetic sample. The optical rotation of our synthetic martinellic acid bistrifluoroacetate was $[\alpha]^{23}{ }_{\mathrm{D}}-164.8(c 0.33, \mathrm{MeOH})$, while $[\alpha]_{\mathrm{D}}-8.5$ (c $0.01, \mathrm{MeOH}$) was reported for the natural product. ${ }^{1}$ Recently, Dr. Sheo Bux Singh, director and head of the Merck group, has informed us that the natural product may have been nearly racemic in his private communication. Our synthetic sample and Prof. Iwabuchi's sample exhibited almost identical optical rotations. ${ }^{5 f}$ Thus, both Iwabuchi's synthesis of both enantiomers of martinellic acid and our synthesis of (- -martinellic acid determined unambiguously the absolute structure as $3 \mathrm{a} S, 4 S, 9 \mathrm{~b} S$ configuration.

Conclusion

The total synthesis of (-)-martinellic acid has been accomplished by the preparation of the chiral dipyrroloquinoline intermediate 3bA. The three key steps in our approach are a $\mathrm{Bu}_{3} \mathrm{SnH}$-promoted radical addition-cyclization-elimination reaction of oxime ether $\mathbf{5 b}$, chemoselective reduction of $\mathbf{3 b A}$, and a new method for the introduction of the guanidine moiety with use of the Mitsunobu reaction. An alternative radical cyclization with SmI_{2} has also been evaluated in our approach. Our synthetic route involves 18 steps making it the shortest of the syntheses to date. Our synthetic strategy will allow improved access to a variety of pyrroloquinoline structures in the future.

Experimental Section

Methyl (E)-4-Bromo-3-[(phenylmethoxyimino)methyl]benzoate (7b). A solution of a mixture of methyl 4-bromo-3-

[^8]methylbenzoate ($\mathbf{1 2)}$ ($10 \mathrm{~g}, 43.7 \mathrm{mmol}$), NBS ($23.3 \mathrm{~g}, 131.1 \mathrm{mmol}$), and AIBN ($717.6 \mathrm{mg}, 4.37 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(437 \mathrm{~mL})$ was refluxed with stirring under a nitrogen atmosphere. After 1.5 h , AIBN (358.8 $\mathrm{mg}, 2.19 \mathrm{mmol}$) was added. After the mixture was stirred at reflux for a further 5 h , AIBN ($717.6 \mathrm{mg}, 4.37 \mathrm{mmol}$) was added. After the solution was refluxed for 6 h , AIBN ($359.6 \mathrm{mg}, 2.19 \mathrm{mmol}$) was added and the mixture was refluxed for 1 h . Then the reaction mixture was filtered to remove the resulting succinimide. The filtrate was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was recrystallized from n-hexane to afford benzyl dibromide (16.9 g , quant.) as pale-yellow crystals.
Methyl 4-Bromo-3-(dibromomethyl)benzoate. Mp 82-83 ${ }^{\circ} \mathrm{C}$ (hexane). IR $v_{\text {max }} \mathrm{cm}^{-1} 1725 .{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 8.66(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 7.08(1 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta 165.5,140.9$, $132.9,132.2,131.6,130.8,124.8,52.6,38.7$. HRMS m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$383.7996, found 383.8002. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}_{2}$: C, 27.94; H, 1.82. Found: C, 27.94; H, 1.95. To a solution of benzyl dibromide ($10 \mathrm{~g}, 25.8 \mathrm{mmol}$) in acetone (308 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(62 \mathrm{~mL})$ was added $\mathrm{AgNO}_{3}(8.77 \mathrm{~g}, 51.6 \mathrm{mmol})$ at room temperature. After being stirred at reflux under a nitrogen atmosphere for 1.5 h , the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated at reduced pressure and extracted with CHCl_{3}. The organic phase was washed with brine, dried with MgSO_{4}, and concentrated at reduced pressure to afford crude 13b. To a solution of crude 13b in pyridine (246 mL) was added $\mathrm{BnONH}_{2} \cdot \mathrm{HCl}(4.53 \mathrm{~g}, 28.4 \mathrm{mmol})$ at room temperature. After being stirred at room temperature under a nitrogen atmosphere overnight, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and 2 M HCl . The organic phase was washed with brine, dried with MgSO_{4}, and concentrated at reduced pressure. The residue was recrystallized from AcOEt to afford $\mathbf{7 b}(7.19 \mathrm{~g}, 80 \%)$ as colorless crystals. Mp $58-60{ }^{\circ} \mathrm{C}$ (AcOEt). IR $v_{\max } \mathrm{cm}^{-1} 1723 .{ }^{1} \mathrm{H}$ NMR (300 MHz) δ $8.52(1 \mathrm{H}, \mathrm{s}), 8.51(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0$ $\mathrm{Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.46-7.30(5 \mathrm{H}, \mathrm{m}), 5.27(2 \mathrm{H}, \mathrm{s})$, $3.93(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 166.0,147.5,137.0,133.4$, 132.0, 131.4, 129.7, 128.6, 128.55, 128.49, 128.2, 77.1, 52.4. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{3}\left(\mathrm{M}^{+}\right)$347.0157, found 347.0159. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{3}$: C, 55.19 ; H, 4.05; N, 4.02. Found: C, 55.44; H, 3.97; N, 4.03.
(S)-1-[4-(Methoxycarbony)-2-[(E)-(phenylmethoxyimino)m-ethyl]phenyl]-5-oxoproline Ethyl Ester (14b): In the Presence of Palladium Catalyst. To 7b ($1.8 \mathrm{~g}, 5.16 \mathrm{mmol}$), L-pyroglutamic acid ethyl ester ${ }^{19}$ ($\left.971.3 \mathrm{mg}, 6.18 \mathrm{mmol}\right), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(247.2 \mathrm{mg}$, 0.27 mmol), Xantphos ($52.1 \mathrm{mg}, 0.09 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.39 \mathrm{~g}$, 7.32 mmol) was added 1,4 -dioxane (5.16 mL) through the septum under an Ar atmosphere at room temperature. After being stirred at $100^{\circ} \mathrm{C}$ for 8 h , the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated at reduced pressure. The residue was purified by FCC (hexane/AcOEt 1:1) to afford 14b $(2.15 \mathrm{~g}, 98 \%)$ as colorless crystals. Mp $101-104{ }^{\circ} \mathrm{C}(\mathrm{AcOEt})$. IR

SCHEME 13

SCHEME 14

33a: $R^{3}=H, 87 \%$ (from 31a and 31'a)
33b: $\mathbf{R}^{3}=\operatorname{Boc}, 65 \%$ (from 31b)
$v_{\max } \mathrm{cm}^{-1} 1721 .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta 8.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$, $8.20(1 \mathrm{H}, \mathrm{s}), 8.04(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}), 7.43-7.32(6 \mathrm{H}, \mathrm{m})$, $5.24(2 \mathrm{H}, \mathrm{s}), 4.59-4.55(1 \mathrm{H}, \mathrm{m}), 4.14-4.03(2 \mathrm{H}, \mathrm{m}), 3.93(3 \mathrm{H}$, s), $2.71-2.61(1 \mathrm{H}, \mathrm{m}), 2.53-2.40(2 \mathrm{H}, \mathrm{m}), 2.23-2.12(1 \mathrm{H}, \mathrm{m})$, $1.16(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}(50 \mathrm{MHz}) \delta 173.8,170.2,164.9$, $144.9,138.5,136.2,130.2,129.03,128.98,128.8,127.5,127.2$, 127.1, 127.0, 75.6, 61.6, 60.8, 51.4, 28.7, 22.6, 13.0. HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$424.1633, found 424.1647. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$: C , $65.08 ; \mathrm{H}, 5.70 ; \mathrm{N}, 6.60$. Found: C, $65.18 ; \mathrm{H}$, 5.63; N, 6.65. $[\alpha]^{28}{ }_{\mathrm{D}}-9.06$ (c 1.035, CHCl_{3}).

In the Presence of Copper Catalyst. To $7 \mathbf{b}(1.35 \mathrm{~g}, 3.89 \mathrm{mmol})$, L-pyroglutamic acid ethyl ester ${ }^{19}$ ($757.5 \mathrm{mg}, 4.82 \mathrm{mmol}$), CuI (38.1 $\mathrm{mg}, 0.20 \mathrm{mmol}), N, N^{\prime}$-dimethylethylenediamine $(0.04 \mathrm{~mL}, 0.4$ $\mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.11 \mathrm{~g}, 8.04 \mathrm{mmol})$ was added 1,4-dioxane $(2.0 \mathrm{~mL})$ through the septum under an Ar atmosphere at room temperature. After being stirred at $130{ }^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was filtered through a pad of Celite and the filtrate was concentrated at reduced pressure. The residue was purified by FCC (hexane/AcOEt 1:1) to afford 14b (1.01 g, 61\%).

Methyl 4-[(5S)-5-[(E)-3-Ethoxy-3-oxo-1-propenyl]-2-oxo-1-pyr-rolidinyl]-3-[(1E)-(phenylmethoxyimino)methyl]benzoate (5b). To a solution of $\mathbf{1 4 b}(199.5 \mathrm{mg}, 0.47 \mathrm{mmol})$ in $\mathrm{MeOH}(7.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(106.7 \mathrm{mg}, 2.82 \mathrm{mmol})$ under a nitrogen atmosphere at room temperature. After being stirred for 40 min , the reaction mixture was diluted with 2 M HCl at $0{ }^{\circ} \mathrm{C}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure. The residue was purified by FCC (AcOEt) to afford alcohol (179.7 mg , quant.) as a colorless oil.

Methyl 4-[(5S)-5-(Hydroxymethyl)-2-oxo-1-pyrrolidinyl]-3-[(E)-(phenylmethoxyimino)methyl]benzoate. IR $\nu_{\max } \mathrm{cm}^{-1} 3375$, 1723. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 8.26(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{s})$, $8.04(1 \mathrm{H}, \mathrm{dd}, J=8.5,2 \mathrm{~Hz}), 7.41-7.25(6 \mathrm{H}, \mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{d}, J=$
$11.0 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s})$, $3.59(1 \mathrm{H}, \mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{dd}, J=12.0,3.0 \mathrm{~Hz})$, $2.41(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 2.27-2.06(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz})$ $\delta 174.7,165.7,146.9,139.1,137.0,131.3,131.0,130.0,129.4$, 128.4, 128.1, 128.0, 127.1, 76.3, 62.2, 62.1, 52.4, 31.1, 20.8. HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 382.1528$, found 382.1530. [$\left.\alpha\right]^{27}{ }_{\mathrm{D}}$ +23.2 (c $\left.1.35, \mathrm{CHCl}_{3}\right)$. To a solution of DMSO $(2.75 \mathrm{~mL}, 38.8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added dropwise a solution of TFAA $(2.69 \mathrm{~mL}, 19.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under a nitrogen atmosphere at $-65^{\circ} \mathrm{C}$. After being stirred at $-65^{\circ} \mathrm{C}$ for 20 min , a solution of the above-mentioned alcohol ($4.93 \mathrm{~g}, 12.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise. After being stirred at -65 ${ }^{\circ} \mathrm{C}$ for 3.5 h , the reaction mixture was warmed briefly to $-30^{\circ} \mathrm{C}$ $(10 \mathrm{~min})$ and cooled to $-65^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(5.22 \mathrm{~mL}, 37.5 \mathrm{mmol})$ was added dropwise at this temperature and the reaction mixture was stirred at $-65{ }^{\circ} \mathrm{C}$ for 30 min and warmed to room temperature. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure to give the crude aldehyde. To a solution of the crude aldehyde in THF (258 mL) was added (carbethoxymethylene)triphenylphosphorane (6.76 g , 19.4 mmol) under a nitrogen atmosphere at room temperature. After being stirred overnight, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure. The residue was purified by FCC (hexane/AcOEt 1:1) to afford $\mathbf{5 b}$ (5.46 $\mathrm{g}, 94 \%$) as a colorless oil. IR $\nu_{\max } \mathrm{cm}^{-1} 1720 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 8.42(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{s}), 8.02(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0$ $\mathrm{Hz}), 7.44-7.30(5 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dd}$, $J=15.5,8.5 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{dd}, J=15.5,0.5 \mathrm{~Hz}), 5.24(2 \mathrm{H}, \mathrm{s})$, $4.57(1 \mathrm{H}$, br q, $J=8.0 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 3.92(3 \mathrm{H}$, s), 2.62-2.28(3H, m), 1.98-1.86(1H, m), $1.24(3 \mathrm{H}, \mathrm{t}, J=7.0$
$\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR (50 MHz) δ 174.4, 165.7, 165.1, 145.6, 144.8, 139.1, 137.1, 131.0, 130.0, 129.8, 129.7, 128.4, 128.1, 128.0, 124.3, 76.5, 61.6, 60.6, 52.3, 30.2, 25.8, 14.0. HRMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left(\mathrm{M}^{+}\right) 450.1789$, found 450.1789. $[\alpha]^{28} \mathrm{D}-3.17$ (c 1.105, $\left.\mathrm{CHCl}_{3}\right)$.
Radical Cyclization of $\mathbf{5 b}$ with $\mathrm{Bu}_{3} \mathbf{S n H}$ and AIBN. To a boiling solution of $\mathbf{5 b}(604.4 \mathrm{mg}, 1.34 \mathrm{mmol})$ in benzene $(7.0 \mathrm{~mL})$ was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.72 \mathrm{~mL}, 2.68 \mathrm{mmol})$ and AIBN ($44.3 \mathrm{mg}, 0.27 \mathrm{mmol}$) in benzene (6.4 mL) by syringe pump for 10 min under a nitrogen atmosphere. After being stirred at reflux for 3.0 h , a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.72 \mathrm{~mL}, 2.68 \mathrm{mmol})$ and AIBN ($44.3 \mathrm{mg}, 0.27 \mathrm{mmol}$) in benzene (6.4 mL) was added by syringe pump for 10 min . After being stirred at reflux for 1.5 h , the reaction mixture was cooled to room temperature and then stirred at room temperature overnight to precipitate 3bA. The reaction mixture was filtered through a glass filter to give $\mathbf{3 b A}$ as colorless crystals (100.6 $\mathrm{mg}, 25 \%)$. The filtrate was extracted with hexane/MeCN. The MeCN phase was concentrated at reduced pressure to give the residue, which was purified by FCC (hexane/AcOEt 1:1) to afford 3bA ($16 \mathrm{mg}, 4 \%$; total 29\%), 3bB ($32.2 \mathrm{mg}, 8 \%$), 3bC (16 mg , 4%) 3bD ($16 \mathrm{mg}, 4 \%$), 15b $(48.5 \mathrm{mg}, 8 \%)$, and $\mathbf{1 6 b}(10.1 \mathrm{mg}$, 2%).
Methyl (3aS,3bS,11bS)-1,3a,3b,4,5,11b-Hexahydro-2,6-dioxo$3 H$-dipyrrolo $1,2-a: 3^{\prime}, 2^{\prime}-c$]quinoline-10-carboxylate (3bA). Colorless crystals. Mp $165-168{ }^{\circ} \mathrm{C}$ (acetone, MeOH). IR $\nu_{\text {max }} \mathrm{cm}^{-1}$ $3428,1702 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.65(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.02$ $(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{br}$ s), $4.84(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{td}, J=11.0$, $7.5 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=17.0,7.5 \mathrm{~Hz}), 2.72-2.57(2 \mathrm{H}, \mathrm{m})$, $2.54-2.43(2 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 1.81-1.73(1 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR (125 MHz) δ 174.6, 173.8, 166.2, 139.8, 131.1, 130.7, 125.7, 123.5, 119.6, 55.8, 53.2, 52.3, 40.3, 34.0, 31.4, 23.1. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 300.1109$, foun: 300.1128. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.99; H, 5.37; N, 9.33. Found: C, 63.85; H, 5.25; N, 9.25. $[\alpha]^{28}{ }_{\mathrm{D}}+100.7$ (c 0.235, $\left.\mathrm{CHCl}_{3}\right)$.

Methyl (3aS,3bS,11bR)-1,3a,3b,4,5,11b-Hexahydro-2,6-dioxo$3 H$-dipyrrolo $1,2-a: 3^{\prime}, 2^{\prime}-c$ quinoline-10-carboxylate (3bB). Colorless crystals. Mp $227-230{ }^{\circ} \mathrm{C}$ (acetone, MeOH). IR $v_{\text {max }} \mathrm{cm}^{-1}$ $3426,1711 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.97(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$), 7.97 $(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}), 7.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.76(1 \mathrm{H}, \mathrm{br}$ s), 4.51 $(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{td}, J=11.0,5.5 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s})$, $2.73-2.57(3 \mathrm{H}, \mathrm{m}), 2.36-2.20(3 \mathrm{H}, \mathrm{m}), 1.90-1.80(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 177.0,174.7,166.4,139.5,130.4,124.9,124.7$, 124.0, 118.1, 62.6, 57.7, 52.2, 43.6, 34.0, 32.9, 25.5. HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 300.1109$, found 300.1108. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.99; H, 5.37; N, 9.33. Found: C, 63.80 ; H, $5.45 ; \mathrm{N}, 9.13$. NOE was observed between 3b-H ($\delta 4.21$) and 11b-H ($\delta 4.51$) in NOESY spectroscopy. The coupling constant of 10.5 Hz was observed between $3 \mathrm{a}-\mathrm{H}$ and $11 \mathrm{~b}-\mathrm{H}$.

Methyl (3aR,3bS,11bS)-1,3a,3b,4,5,11b-Hexahydro-2,6-dioxo$3 H$-dipyrrolo $1,2-a: 3^{\prime}, 2^{\prime}-c$]quinoline-10-carboxylate (3bC). Colorless crystals. Mp $105-109{ }^{\circ} \mathrm{C}$ (acetone, MeOH). IR $v_{\max } \mathrm{cm}^{-1}$ $3424,1704 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 8.06(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz})$, $7.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.22-4.17$ (1 H , ddd, $J=11.5,7.5,4.5 \mathrm{~Hz}$), $4.14(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 3.93$ $(3 \mathrm{H}, \mathrm{s}), 2.74-2.67(1 \mathrm{H}, \mathrm{m}), 2.59-2.46(4 \mathrm{H}, \mathrm{m}), 2.21-2.16(1 \mathrm{H}$, $\mathrm{m}), 2.08-2.01(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 177.0,173.7,166.5$, $137.4,132.8,129.4,126.9,124.0,122.6,56.4,53.5,52.4,45.8$, 32.6, 32.1, 24.2. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$300.1109, found 300.1104. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $63.99 ; \mathrm{H}, 5.37$; N, 9.33. Found: C, 63.95; H, 5.48; N, 9.19. NOE was observed between $4-\mathrm{H}(\delta 2.08-2.01)$ and 11b-H ($\delta 4.14$) in NOESY spectroscopy. The coupling constant of 10.5 Hz was observed between $3 \mathrm{a}-\mathrm{H}$ and $11 \mathrm{~b}-\mathrm{H}$.

Methyl (3aR,3bS,11bR)-1,3a,3b,4,5,11b-Hexahydro-2,6-dioxo$3 H$-dipyrrolo $\left[1,2-a: 3^{\prime}, 2^{\prime}-c\right.$ cquinoline-10-carboxylate (3bD). Colorless crystals. Mp $231-234^{\circ} \mathrm{C}$ (acetone, MeOH). IR $\nu_{\text {max }} \mathrm{cm}^{-1}$ $3428,1704 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 8.65(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.89$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{br}$ s), $4.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{td}, J=7.5,3.0 \mathrm{~Hz}), 3.89$
$(3 \mathrm{H}, \mathrm{s}), 3.22-3.15(1 \mathrm{H}, \mathrm{m}), 2.70-2.57(2 \mathrm{H}, \mathrm{m}), 2.38-2.25(3 \mathrm{H}$, $\mathrm{m}), 1.87-1.78(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 175.7,174.0,166.1$, $139.0,130.6,129.9,126.4,126.2,119.0,56.9,53.0,52.2,38.9$, 31.6, 28.7, 21.8. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 300.1109$, found 300.1111. NOE was observed between 3b-H ($\delta 4.17$) and $11 \mathrm{~b}-\mathrm{H}(\delta 4.86)$ in NOESY spectroscopy. The coupling constant of 8.0 Hz was observed between $3 \mathrm{a}-\mathrm{H}$ and $11 \mathrm{~b}-\mathrm{H}$.

Ethyl (3aS,4S,5S)-3,3a,4,5-Tetrahydro-7-methoxycarbonyl-1-oxo-5-[(phenylmethoxy)-amino]-1H-pyrrolo[1,2-a]quinoline-4acetate (15b). A pale-yellow oil. IR $v_{\max } \mathrm{cm}^{-1} 3261,1718 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 8.90(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$, $7.94(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}), 7.34-7.24(5 \mathrm{H}, \mathrm{m}), 5.48(1 \mathrm{H}, \mathrm{d}, J$ $=3.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz})$, $4.32(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=3.0 \mathrm{~Hz}), 4.20-4.06(3 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.71$ $(1 \mathrm{H}, \mathrm{dd}, J=16.5,10.0 \mathrm{~Hz}), 2.64-2.48(3 \mathrm{H}, \mathrm{m}), 2.34-2.20(2 \mathrm{H}$, m), 1.76-1.66 ($1 \mathrm{H}, \mathrm{m}$), $1.24(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta 174.3,171.1,166.4,140.6,136.9,132.1,130.4,128.5$, $128.4,128.0,124.8,123.9,117.8,75.9,60.7,58.3,57.0,52.0,39.1$, 32.5, 32.2, 24.6, 14.2. HRMS m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$ 452.1945 , found 452.1929 . The absolute configuration of 15 b was determined by leading to the formation of 16 b by the reaction with $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$.

Methyl (3aS,3bS,11bS)-2,3,3a,3b,4,5,6,11b-Octahydro-2,6-di-oxo-1-(phenylmethoxy)-1H-dipyrrolo[1,2-a:3', $\left.\mathbf{2}^{\prime}-c\right]$ quinoline-10carboxylate (16b). Colorless crystals. Mp 230-233 ${ }^{\circ} \mathrm{C}$ (AcOEt). IR $v_{\max } \mathrm{cm}^{-1} 1711 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 8.72(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz})$, $7.30-7.18(5 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=5.5$ $\mathrm{Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 3.93(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{td}, J=10.0$, $8.5 \mathrm{~Hz}), 2.75-2.52(3 \mathrm{H}, \mathrm{m}), 2.50-2.25(2 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=17.5 \mathrm{~Hz}$), $1.82-1.65(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 173.7$, $170.6,166.2,140.1,134.0,133.7,131.3,130.0,128.9,128.3,125.3$, 120.4, 119.1, 78.4, 56.8, 56.4, 52.2, 34.4, 31.5, 30.7, 23.5. HRMS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$406.1527, found 406.1526. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.50 ; \mathrm{H}, 5.58 ; \mathrm{N}, 6.74$. Found: C, 66.90; H, 5.45; N, 6.64. NOE was observed between 3-H (δ 2.29) and 3b-H ($\delta 3.68$) in NOESY spectroscopy. The coupling constant of 5.5 Hz was observed between $3 \mathrm{a}-\mathrm{H}$ and $11 \mathrm{~b}-\mathrm{H}$.

Sammarium-Mediated Reaction of $\mathbf{5 b}$. To a stirred solution of $\mathrm{SmI}_{2}(0.1 \mathrm{M}$ in THF, $17.2 \mathrm{~mL}, 1.72 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ was added $t-\mathrm{BuOH}(4.0 \mathrm{~mL})$ and the resulting solution was stirred for 10 min . A solution of oxime ether $\mathbf{5 b}(155 \mathrm{mg}, 0.34 \mathrm{mmol})$ in THF (3.0 mL) was then added and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched by opening to the air, followed by the addition of saturated NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo to give the crude product mixture containing $\mathbf{3 b A}$ and $\mathbf{3 b B}$ ($4: 1$ by ${ }^{1} \mathrm{H}$ NMR). Purification by column chromatography (silica gel, $\mathrm{EtOAc} / \mathrm{MeOH} /$ $\mathrm{NEt}_{3} 89: 10: 1$) gave 3bA ($42 \mathrm{mg}, 41 \%$).

Chemoselective Reduction of 3bA. (a) Table 1, Entry 1. To a solution of 3bA ($9 \mathrm{mg}, 0.03 \mathrm{mmol}$) in THF (3 mL) and MeOH $(0.3 \mathrm{~mL})$ was added $\mathrm{LiBH}_{4}(0.6 \mathrm{mg}, 0.03 \mathrm{mmol})$ under a nitrogen atmosphere at room temperature. More $\mathrm{LiBH}_{4}(0.6 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added to the solution every 24 h . After being stirred at room temperature for 7 days, the reaction mixture was acidified with 1 M HCl at $0^{\circ} \mathrm{C}$ and basified with $10 \% \mathrm{NaOH}$ at $0^{\circ} \mathrm{C}$. The mixture was extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was purified by PTLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 1\right)$ to afford $19(2.7 \mathrm{mg}, 30 \%)$ and $20(5.5 \mathrm{mg}, 67 \%)$.
(b) Table 1, Entry 2. To a boiling solution of 3bA $(99.1 \mathrm{mg}$, $0.33 \mathrm{mmol})$ in THF (6 mL) and $\mathrm{MeOH}(0.6 \mathrm{~mL})$ was added LiBH_{4} $(21.6 \mathrm{mg}, 0.99 \mathrm{mmol})$ under a nitrogen atmosphere. After being stirred at reflux for $15 \mathrm{~min}, \mathrm{LiBH}_{4}(21.6 \mathrm{mg}, 0.99 \mathrm{mmol})$ was added. After being stirred at reflux for 10 min , the reaction mixture was acidified with 1 M HCl at $0^{\circ} \mathrm{C}$ and basified with $10 \% \mathrm{NaOH}$ at 0 ${ }^{\circ} \mathrm{C}$. The mixture was extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced
pressure. The residue was purified by $\mathrm{FCC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 1\right)$ to afford 19 ($76.3 \mathrm{mg}, 76 \%$) and $20(15.3 \mathrm{mg}, 17 \%)$.
(c) Table 1, Entry 3. To a solution of 3bA ($20.4 \mathrm{mg}, 0.068 \mathrm{mmol}$) in Diglyme (1.5 mL) and $\mathrm{MeOH}(0.1 \mathrm{~mL})$ was added $\mathrm{LiBH}_{4}(1.5$ $\mathrm{mg}, 0.068 \mathrm{mmol}$) at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred at $90^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h}, \mathrm{LiBH}_{4}(1.5 \mathrm{mg}, 0.068 \mathrm{mmol})$ was added. After being stirred at $90^{\circ} \mathrm{C}$ for $4 \mathrm{~h}, \mathrm{LiBH}_{4}(1.5 \mathrm{mg}, 0.068 \mathrm{mmol})$ was added. After being stirred at $90^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was acidified with 1 M HCl at $0^{\circ} \mathrm{C}$ and basified with $10 \% \mathrm{NaOH}$ at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was purified by $\operatorname{PTLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ 10:1) to afford 19 ($5.2 \mathrm{mg}, 25 \%$) and $20(3.5 \mathrm{mg}, 19 \%)$.

Methyl (3aS,3bS,11bS)-2,3,3a,4,5,9b-Hexahydro-4-(3-hydrox-ypropyl)-2-oxo-1H-pyrrolo[3,2-c] quinoline-8-carboxylate (19). Colorless crystals. Mp $170-175^{\circ} \mathrm{C}$ (benzene, MeOH). IR $v_{\text {max }} \mathrm{cm}^{-1}$ $3341,1695,1683 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO) $\delta 8.22(1 \mathrm{H}, \mathrm{br}$ s), $7.77(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}), 6.67$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.43$ $(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.39(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J=5.5 \mathrm{~Hz})$, $3.00-2.98(1 \mathrm{H}, \mathrm{m}), 2.46-2.38(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=16.5$, $8.5 \mathrm{~Hz}), 2.02(1 \mathrm{H}, \mathrm{dd}, J=16.5,6.0 \mathrm{~Hz}), 1.64-1.52(2 \mathrm{H}, \mathrm{m})$, $1.52-1.38(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-DMSO) $\delta 175.4$, $166.2,148.6,132.4,129.5,119.2,116.3,113.8,60.7,51.2,50.6$, 50.2, 37.1, 34.2, 29.5, 28.5. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$ 304.1422, found 304.1427. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.14; H, 6.62; N, 9.20. Found: C, 62.94; H, 6.43; N, 9.21. $[\alpha]^{29}{ }_{D}-19.4$ (c $0.785, \mathrm{MeOH})$.
(3aS,3bS,11bS)-1,3a,3b,4,5,11b-Hexahydro-2,6-dioxo-10-hy-droxymethyl-3H-dipyrrolo $\left.1,2-a: 3^{\prime}, 2^{\prime}-c\right]$ quinoline (20). Colorless crystals. $\mathrm{Mp}>260^{\circ} \mathrm{C}(\mathrm{MeOH})$. IR $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} 3445,3377$, $3211,1709,1684,1661 .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.36(1 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.5 \mathrm{~Hz})$, $4.84(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{tt}, J=7.5,7.5$ $\mathrm{Hz}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=17,8.0 \mathrm{~Hz}), 2.70-2.62(1 \mathrm{H}, \mathrm{m}), 2.60-2.50$ $(2 \mathrm{H}, \mathrm{m}), 2.50-2.40(1 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 1.84-1.74$ $(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 178.3,176.0,139.0$, $135.9,129.8,128.4,126.0,120.8,64.6,57.855 .0,41.5,35.1,32.2$, 23.6. HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 272.1160$, found 272. 1160.

Methyl (3aS,3bS,9bS)-1,5-Bis(trifluoroacetyl)-2,3,3a,4,5,9b-hexahydro-4-(3-hydroxypropyl)-1H-pyrrolo[3,2-c]quinoline-8carboxylate (22a). To a solution of $19(10 \mathrm{mg}, 0.033 \mathrm{mmol})$ in THF (2 mL) was added slowly $\mathrm{BH}_{3} \cdot \mathrm{THF}$ (1 M in THF, 0.165 mL , 0.165 mmol) under an Ar atmosphere at room temperature. After being stirred for 10 min , the reaction mixture was heated to reflux. After being stirred at reflux for $1.5 \mathrm{~h}, 6 \mathrm{M} \mathrm{HCl}(1.0 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was basified with $10 \% \mathrm{NaOH}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure to afford crude 18. To a solution of crude $\mathbf{1 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.02 \mathrm{~mL}, 0.116$ $\mathrm{mmol})$, DMAP ($0.4 \mathrm{mg}, 0.003 \mathrm{mmol}$), and TFAA ($0.02 \mathrm{~mL}, 0.116$ mmol) under a nitrogen atmosphere at room temperature. After being stirred at room temperature overnight, saturated $\mathrm{NaHCO}_{3}(0.5$ mL) was added at $0^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , the reaction mixture was extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was purified by FCC (AcOEt/hexane 1:1) to afford $\mathbf{2 2 a}{ }^{5 \mathrm{~d}, \mathrm{e}}(12.6 \mathrm{mg}, 79 \%)$ as a colorless oil. IR $v_{\max }$ (neat) $\mathrm{cm}^{-1} 3526,1695 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 8.43(1 \mathrm{H}, \mathrm{d}, J=1.5$ $\mathrm{Hz}), 8.02(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{br}$ s), $4.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.92(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.64-3.50(3 \mathrm{H}, \mathrm{m}), 2.74-2.68$ $(1 \mathrm{H}, \mathrm{m}), 2.34-2.24(1 \mathrm{H}, \mathrm{m}), 2.18-2.08(1 \mathrm{H}, \mathrm{m}), 1.66-1.48(4 \mathrm{H}$, m). ${ }^{13} \mathrm{C} \operatorname{NMR}(125 \mathrm{MHz}) \delta 165.8,157.1$ (q, COCF_{3}), 137.8, 133.6, $130.4,129.9,125.3,116.5\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 116.2\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 61.9$, 58.6, 57.7, 52.4, 46.0, 30.8, 30.1, 29.7, 28.6. HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$482.1275, found 482.1273. $[\alpha]^{16} \mathrm{D}+64.0(c$ $\left.0.99, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .[\alpha]^{20}{ }_{\mathrm{D}}+65.1\left(c 0.97, \mathrm{CHCl}_{3}\right)\right] .{ }^{5 \mathrm{~d}, \mathrm{e}}$ The presence
of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Methyl (3aS,3bS,9bS)-1,5-Bis(2,2,2-trichloroethoxycarbonyl)-4-[3-(2,2,2-trichloroethoxycarbonyloxy)propyl]-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-8-carboxylate (21). To a solution of $19(240.4 \mathrm{mg}, 0.79 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added slowly $\mathrm{BH}_{3} \cdot$ THF (0.9 M in THF, $4.4 \mathrm{~mL}, 3.95 \mathrm{mmol}$) under an Ar atmosphere at room temperature. After being stirred for 20 min , the reaction mixture was heated to reflux. After being stirred at reflux for $1.5 \mathrm{~h}, 6 \mathrm{M} \mathrm{HCl}(4.0 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 2.5 h , the reaction mixture was basified with $10 \% \mathrm{NaOH}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure to afford crude 18. To a solution of crude 18 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added pyridine $(0.22 \mathrm{~mL}, 2.8 \mathrm{mmol})$, DMAP ($48.9 \mathrm{mg}, 0.4 \mathrm{mmol}$), and 2,2,2-trichloroethyl chloroformate $(0.39 \mathrm{~mL}, 2.8 \mathrm{mmol})$ under a nitrogen atmosphere at room temperature. After being stirred at room temperature overnight, the reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with CHCl_{3}. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure. The residue was purified by FCC (AcOEt/hexane 1:3) to afford 21 ($522.5 \mathrm{mg}, 81 \%$) as a white solid. IR $v_{\text {max }} \mathrm{cm}^{-1} 2956,1761,1739$, 1714. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 8.54(2 / 3 \mathrm{H}, \mathrm{s}), 8.42(1 / 3 \mathrm{H}, \mathrm{s}), 7.93$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.90-4.70(6 \mathrm{H}, \mathrm{m}), 4.30-4.10$ $(2 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.80-3.60(1 \mathrm{H}, \mathrm{m}), 3.60-3.48(2 / 3 \mathrm{H}, \mathrm{m})$, $2.80-2.58(1 \mathrm{H}, \mathrm{m}), 2.32-2.12(1 \mathrm{H}, \mathrm{m}), 2.0-1.5(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}) \delta 166.3,154.8,153.8,153.3,138.1,137.5,132.4,132.0$, 129.6, 129.4, 128.7, 127.3, 124.6, 95.7, 95.0, 94.3, 75.4, 75.0, 68.1, 56.1, 55.6, 54.8, 52.2, 52.1, 45.7, 45.4, 41.7, 28.8, 28.4, 27.9, 25.4. HRMS m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{Cl}_{9} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\mathrm{M}^{+}\right) 811.8755$, found 811.8766. $[\alpha] 21_{\mathrm{D}}-18.5\left(c 1.245, \mathrm{CHCl}_{3}\right)$. The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

General Procedure for Selective Deprotection of Troc Carbonate of 21 [Table 2]. To a solution of 21 in solvent $(0.01 \mathrm{mmol} /$ $\mathrm{mL})\left(\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=20: 1\right.$) was added TFA or $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature. After being stirred overnight, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure. The residue was purified by PTLC to afford 22b, 23, or 21 in yields shown in Table 2.

Methyl (3aS,3bS,9bS)-1,5-Bis(2,2,2-trichloroethoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-4-(3-hydroxypropyl)-1H-pyrrolo[3,2c]quinoline-8-carboxylate (22b). A colorless oil. IR $\nu_{\text {max }}$ (neat) $\mathrm{cm}^{-1} 3509,2953,1715 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 8.54(2 / 3 \mathrm{H}, \mathrm{s}$), 8.42 $(1 / 3 \mathrm{H}, \mathrm{s}), 7.93(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.28$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.83(1 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{s}), 4.72(1 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.80-3.44$ $(7 / 2 \mathrm{H}, \mathrm{m}), 3.44-3.30\left({ }^{1} / 2 \mathrm{H}, \mathrm{m}\right), 2.74-2.58(1 \mathrm{H}, \mathrm{m}), 2.28-2.10(1 \mathrm{H}$, m), $2.00-1.80(1 \mathrm{H}, \mathrm{m}), 1.80-1.30(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 166.4,154.8,153.3,137.8,132.3,132.0,129.3,128.8,127.1$, $124.5,95.7,95.0,77.2,75.4,75.0,62.0,55.9,54.8,52.1,45.4,41.7$, 29.7, 29.2, 29.1, 28.7, 27.9. HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{7}$ $\left(\mathrm{M}^{+}\right)$637.9713, found 637.9725. $[\alpha]^{25} \mathrm{D}-17.9$ (c 1.015, $\left.\mathrm{CHCl}_{3}\right)$. The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Methyl (3aS,3bS,9bS)-1-(2,2,2-Trichloroethoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-4-(3-hydroxypropyl)-5-methoxycarbo-nyl-1H-pyrrolo[3,2-c]quinoline-8-carboxylate (23). A colorless oil. IR $\nu_{\text {max }}$ (neat) $\mathrm{cm}^{-1} 3501,1723,1695 .{ }^{1} \mathrm{H}$ NMR (300 MHz) δ $8.51(2 / 3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 8.40(1 / 3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $7-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 6-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 9 \mathrm{~b}-\mathrm{H})$, $4.87\left({ }^{2} / 5 \mathrm{H}, \mathrm{s}\right.$, Troc), $4.83(3 / 5 \mathrm{H}, \mathrm{s}$, Troc $), 4.72-4.62(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, H_{3} \mathrm{COCON}\right), 3.80-3.46(1 / 2 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}_{1}, 3^{\prime}-\mathrm{H}_{2}\right), 3.42-3.28\left(1 / 2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{1}\right), 2.70-2.54(1 \mathrm{H}, \mathrm{m}$, $3 \mathrm{a}-\mathrm{H}), 2.24-2.10\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{1}\right), 1.92-1.48\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{1}, 1^{\prime}-\mathrm{H}_{2}\right.$, $2^{\prime}-\mathrm{H}_{2}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 166.4,155.7,154.7,138.5,132.2$,
$129.1,128.3,126.3,124.5,124.3,95.7,77.2,74.9,62.0,55.6,55.2$, 54.8, 53.4, 52.0, 45.6, 45.4, 41.5, 30.8, 29.0, 28.6, 27.6. HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 522.0726$, found 522.0755. $[\alpha]^{26}{ }_{\mathrm{D}}-38.8\left(c 1.07, \mathrm{CHCl}_{3}\right)$. The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Mitsunobu Reaction of 22a. To a solution of $\mathbf{2 2 a}(48.2 \mathrm{mg}$, $0.10 \mathrm{mmol})$ in THF (1.0 mL) were added $\mathbf{2 5 b}(87.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, $\mathrm{Ph}_{3} \mathrm{P}(39.3 \mathrm{mg}, 0.15 \mathrm{mmol})$, and DIAD (2.2 M in toluene, 0.07 $\mathrm{mL}, 0.15 \mathrm{mmol}$) under an Ar atmosphere at room temperature. After being stirred for 1.0 h , the reaction mixture was concentrated at reduced pressure. The residue was purified by FCC (AcOEt/hexane $1: 2$) to afford 29a ($33.2 \mathrm{mg}, 44 \%$) and $\mathbf{3 0 a}(6.6 \mathrm{mg}, 17 \%)$.

Methyl (3aS,3bS,9bS)-4-\{3-[N-(tert-Butoxycarbonyl)- N - [(tert-butoxycarbonylimino)(methylthio)methyl]amino]propyl\}-1,5-bis(trifluoroacetyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quin-oline-8-carboxylate (29a). A colorless oil. IR $v_{\max }$ (neat) cm^{-1} 1695. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 8.43(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 8.03(1 \mathrm{H}$, $\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.71(1 \mathrm{H}, \mathrm{br}$ s), $3.93(4 \mathrm{H}, \mathrm{br}$ s $), 3.60-3.48(1 \mathrm{H}, \mathrm{m}), 3.44(2 \mathrm{H}$, br t, $J=7.0 \mathrm{~Hz})$, $2.74-2.64(1 \mathrm{H}, \mathrm{m}), 2.35(4 \mathrm{H}, \mathrm{br}$ s $), 2.14(1 \mathrm{H} \mathrm{br} \mathrm{s}), 1.65(4 \mathrm{H}, \mathrm{m})$, $1.49(9 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}) \delta 165.8,162.3$, $157.8,156.8\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 151.8,137.7,133.5,130.4,129.6,125.4$, $116.3\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 116.0\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 82.5,82.0,58.3,52.4,47.6$, 46.0, 30.4, 29.7, 28.00, 27.96, 24.9, 15.5. HRMS m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}\left(\mathrm{M}^{+}\right) 754.2468$, found 754.2497. $[\alpha]^{21}{ }_{\mathrm{D}}+27.9(c$ $1.51, \mathrm{CHCl}_{3}$). The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Methyl (3aS,3bS,9bS)-1-Trifluoroacetyl-2,3,3a,4,5,9b-hexahy-dro-4-(3-hydroxypropyl)-1H-pyrrolo[3,2-c] quinoline-8-carboxylate (30a). A colorless oil. IR $\nu_{\max }$ (neat) $\mathrm{cm}^{-1} 3627,3441,1687$. ${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta 7.98(1 \mathrm{H}, \mathrm{s}), 7.73(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.47$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s})$, $3.80-3.60(4 \mathrm{H}, \mathrm{m}), 3.45-3.30(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}$, br q, $J=9.0$ $\mathrm{Hz}), 2.13(1 \mathrm{H}$, br q, $J=6.5 \mathrm{~Hz}), 1.80-1.50(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}) \delta 167.0,157.2\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 145.6,132.0,130.8,119.6$, $117.2,116.6\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 114.0,62.6,54.1,51.7,51.2,44.6,39.8$, 32.7, 29.7, 29.1, 27.5. HRMS m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$ 386.1452, found 386.1433 .

Methyl (3aS,3bS,9bS)-4-\{3-[N-(tert-Butoxycarbonyl)- N - $[($ tert-butoxycarbonylimino)(methylthio)methyl]amino]propyl\}-1,5-bis(2,2,2-trichloroethoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-8-carboxylate (29b). According to the procedure given for the Mitsunobu reaction of 22a, reaction of 22b ($34.6 \mathrm{mg}, 0.054 \mathrm{mmol}$) with 25 b $(47.0 \mathrm{mg}, 0.162 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}$ $(21.2 \mathrm{mg}, 0.081 \mathrm{mmol})$, and DIAD $(2.2 \mathrm{M}$ in toluene, 0.04 mL , 0.081 mmol) gave 29b ($47.4 \mathrm{mg}, 96 \%$) as a colorless oil. IR $v_{\max }$ (neat) $\mathrm{cm}^{-1} 2981,1715,1615 .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 8.54(2 / 3 \mathrm{H}$, s), $8.42\left(1 /{ }_{3} \mathrm{H}, \mathrm{s}\right), 7.93(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 5.27(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.12-4.90(1 \mathrm{H}, \mathrm{m}), 4.86(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.83(1 \mathrm{H}, \mathrm{s}), 4.77(1 \mathrm{H}, \mathrm{s}), 4.73(1 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.80-3.30$ $(2 \mathrm{H}, \mathrm{m}), 3.47(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.72-2.56(1 \mathrm{H}, \mathrm{m}), 2.33(3 \mathrm{H}$, s), 2.26-2.10 ($1 \mathrm{H}, \mathrm{m}$), 2.00-1.80 $(1 \mathrm{H}, \mathrm{m}), 1.82-1.60(4 \mathrm{H}, \mathrm{m})$, $1.48(9 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta 166.3,162.5$, $157.7,154.7,153.2,151.8,137.8,132.3,131.9,129.3,128.8,127.0$, $124.6,95.7,95.0,82.3,81.9,77.2,75.4,75.0,55.6,54.8,52.1,47.9$, $45.4,41.6,29.6,29.4,29.2,28.00,27.96,27.85,25.5,21.9,21.7$, 15.6. SIMS calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{Cl}_{6} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 911.0984$, found 911.0978. $[\alpha]^{26} \mathrm{D}-22.6\left(c 0.55, \mathrm{CHCl}_{3}\right)$. The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Guanylation Reaction of 29a. To a solution of 29a (113.2 mg, $0.15 \mathrm{mmol})$ in THF (3.0 mL) was added 3-methyl-2-buten-1amine ${ }^{28}(127.7 \mathrm{mg}, 1.50 \mathrm{mmol})$ at room temperature. After being stirred for 5.0 h , the reaction mixture was concentrated at reduced pressure. The residue was purified by PTLC $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ to afford 31a $(60.6 \mathrm{mg}, 51 \%)$ and 31'a ($38.6 \mathrm{mg}, 37 \%$).

Methyl (3aS,3bS,9bS)-4-\{3-[1,2-Di(tert-butoxycarbonyl)-3-(3-methylbut-2-enyl)guanidino]propyl\}-1,5-bis(trifluoroacetyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-8-carbox-
ylate (31a). A colorless oil. IR $v_{\max }$ (neat) $\mathrm{cm}^{-1} 1694 .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 8.43(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{dd}, J=7.0,1.5$ $\mathrm{Hz}), 7.42(1 \mathrm{H}$, br s), $5.31(1 \mathrm{H}$, br s), $5.18(1 \mathrm{H}$, br t, $J=7.0 \mathrm{~Hz})$, $4.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 4.00-3.84(1 \mathrm{H}, \mathrm{m}), 3.71(2 \mathrm{H}, \mathrm{d}, J=$ $6.5 \mathrm{~Hz}), 3.65-3.40(3 \mathrm{H}, \mathrm{m}), 2.80-2.62(1 \mathrm{H}, \mathrm{m}), 2.22-2.40(1 \mathrm{H}$, $\mathrm{m}), 2.24-2.04(1 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s})$, $1.45(9 \mathrm{H}, \mathrm{s}), 1.80-1.40(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}) \delta 165.7$, $156.8\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 137.8,133.5,130.4,129.6,125.3,118.5,116.1$ $\left(\mathrm{q}, \mathrm{COCF}_{3}\right), 82.6,79.3,77.2,52.3,46.5,45.9,41.7,28.2,28.1$, 25.6, 25.0, 17.9. SIMS calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H}) 792.3404$, found 792.3415. $[\alpha]^{29}{ }_{\mathrm{D}}+20.4\left(c \quad 0.93, \mathrm{CHCl}_{3}\right)$. The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Methyl (3aS,3bS,9bS)-4-\{3-[1,2-Di(tert-butoxycarbonyl)-3-(3-methylbut-2-enyl)guanidino]propyl\}-1-trifluoroacetyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-8-carboxylate (31'a). A colorless oil. IR $\nu_{\max }$ (neat) $\mathrm{cm}^{-1} 3366,1705 .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 9.38(1 \mathrm{H}$, br s), $7.96(1 \mathrm{H}, \mathrm{s}), 7.71(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.5 \mathrm{~Hz})$, $6.61(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.88-5.72(1 \mathrm{H}, \mathrm{m}), 5.55(1 \mathrm{H}, \mathrm{d}, J=7.0$ $\mathrm{Hz}), 5.23(1 \mathrm{H}$, br t, $J=6.0 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.90-3.60(3 \mathrm{H}, \mathrm{m})$, $3.60-3.36(3 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}$, br q, $J=9.0 \mathrm{~Hz}), 2.14(2 \mathrm{H}$, br q, J $=9.0 \mathrm{~Hz}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.67(3 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s})$, $1.90-1.30(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}) \delta 167.1,157.2\left(\mathrm{q}, \mathrm{COCF}_{3}\right)$, $146.0,137.9,131.9,130.6,118.8,118.6,116.6,116.4\left(\mathrm{q}, \mathrm{COCF}_{3}\right)$, $114.1,83.0,79.4,77.2,54.1,51.5,49.5,46.1,44.6,42.0,39.8,31.8$, 28.2, 28.1, 27.5, 25.6, 24.8, 18.0. SIMS calcd for $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{7}$ $(\mathrm{M}+\mathrm{H})$ 696.3581, found 696.3571. $[\alpha]^{29} \mathrm{D}-294.23$ (c 0.52, CHCl_{3}). The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.

Methyl (3aS,4S,9bS)-1-[N^{\prime}-(tert-Butoxycarbonyl)- N-(3-meth-ylbut-2-enyl)carbamimidoyl]-4-\{3-[2-(tert-butoxycarbonyl)-3-(3-methylbut-2-enyl)guanidino]propyl\}-2,3,3a4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-8-carboxylate (33a). To a solution of 31a:31'a ($1.6: 1,89.8 \mathrm{mg}, 0.119 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(98.7 \mathrm{mg}, 0.714 \mathrm{mmol})$ under a nitrogen atmosphere at room temperature. After being stirred at room temperature overnight, $\mathrm{K}_{2} \mathrm{CO}_{3}(49.3 \mathrm{mg}, 0.357 \mathrm{mmol})$ was added. After being stirred at room temperature for 8 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure to afford crude amine. To a solution of the crude amine in DMF $(3.0 \mathrm{~mL})$ were added isothiourea $32^{5}(36.9 \mathrm{mg}, 0.143 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.05 \mathrm{~mL}, 0.357 \mathrm{mmol})$ under a nitrogen atmosphere at room temperature. After being stirred at room temperature for 10 min , $\mathrm{HgCl}_{2}(38.8 \mathrm{mg}, 0.143 \mathrm{mmol})$ was added. After being stirred at room temperature for 2 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was purified by PTLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 10: 1\right)$ to afford $\mathbf{3 3 a}{ }^{5 \mathrm{~d}-\mathrm{g}}(73.5 \mathrm{mg}, 87 \%)$ as a white foam. IR $\nu_{\max }$ (neat) $\mathrm{cm}^{-1} 3294$, 2977, 1696, 1608. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.98(1 \mathrm{H}, \mathrm{s}), 7.65(1 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.60(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.72(1 \mathrm{H}$, $\mathrm{d}, J=7.0 \mathrm{~Hz}), 5.38-5.24(1 \mathrm{H}, \mathrm{m}), 5.24-5.12(1 \mathrm{H}, \mathrm{m}), 3.95-3.60$ $(4 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.50-3.20(4 \mathrm{H}, \mathrm{m}), 3.25-3.05(1 \mathrm{H}, \mathrm{m})$, $2.40-2.20(1 \mathrm{H}, \mathrm{m}), 2.15-1.90(2 \mathrm{H}, \mathrm{m}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}$, s), $1.67(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.80-1.40$ $(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 167.4,163.9,161.9,161.4,160.1$, $146.5,137.0,131.7,130.0,120.3,119.5,118.2,117.7,113.7,78.0$, $77.6,77.2,53.3,51.3,50.5,46.7,42.5,40.0,39.42,39.36,31.9$, $28.44,28.38,28.0,27.9,26.5,25.6,17.9$. SIMS calcd for $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H}) 710.4602$, found 710.4594. $[\alpha]^{25}{ }_{\mathrm{D}}-179.2$ (c 1.20, CHCl_{3}) $\left[\right.$ lit. $[\alpha]^{28}{ }_{\mathrm{D}}-179.1\left(c 0.80, \mathrm{CHCl}_{3}\right),{ }^{5 \mathrm{f}}[\alpha]^{20}{ }_{\mathrm{D}}-94.2$ $\left.\left(c 0.28, \mathrm{CHCl}_{3}\right),{ }^{5 \mathrm{~d}, \mathrm{e}}[\alpha]_{\mathrm{D}}-95.2\left(c 0.58, \mathrm{CHCl}_{3}\right)^{5 \mathrm{~g}}\right]$.
(-)-Martinellic Acid (1a). To a solution of $\mathbf{3 3 a}(51.1 \mathrm{mg}, 0.072$ $\mathrm{mmol})$ in $\mathrm{MeOH}(8.0 \mathrm{~mL})$ was added $0.2 \mathrm{M} \mathrm{NaOH}(2.76 \mathrm{~mL})$ under a nitrogen atmosphere at room temperature. After being stirred at reflux for 14 h , the reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure
to afford crude acid. To a solution of the crude acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.0 \mathrm{~mL})$ was added TFA $(0.07 \mathrm{~mL})$ under a nitrogen atmosphere at room temperature. After being stirred at room temperature for 24 h , further TFA (0.035 mL) was added. After being stirred at room temperature for 24 h , the reaction mixture was concentrated at reduced pressure. The residue was purified by preparative HPLC through a COSMOSIL 5C18-PAQ ($20 \times 250 \mathrm{~mm}$) eluting with 80:20 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (with $0.1 \% \mathrm{TFA}$) to $60: 40 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (with $0.1 \% \mathrm{TFA}$) as a gradient over 80 min and with a flow rate of 5 $\mathrm{mL} / \mathrm{min}$. The detector was set to 330 nm and the major fraction had a retention time of 67.6 min . This fraction was concentrated at reduced pressure to afford $\mathbf{1 a}(27.8 \mathrm{mg}, 56 \%)$ as a white powder. IR $v_{\text {max }}$ (neat) $\mathrm{cm}^{-1} 3318,3198,1659,1610 .{ }^{1} \mathrm{H}$ NMR (500 MHz , d_{6}-DMSO) $\delta 7.73(1 \mathrm{H}, \mathrm{br}$ s), $7.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.53$ $(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.36(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.03$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=3.0 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.32-5.26(1 \mathrm{H}$, m), $5.23(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 5.18-5.12(1 \mathrm{H}, \mathrm{m}), 3.96-3.90(1 \mathrm{H}$, $\mathrm{m}), 3.88-3.80(1 \mathrm{H}, \mathrm{m}), 3.71(2 \mathrm{H}$, br t, $J=5.5 \mathrm{~Hz}), 3.40-3.30$ $(2 \mathrm{H}, \mathrm{m}), 3.30-3.22(1 \mathrm{H}, \mathrm{m}), 3.18-3.06(2 \mathrm{H}, \mathrm{m}), 2.46-2.38(1 \mathrm{H}$, m), 2.10-2.02 $(1 \mathrm{H}, \mathrm{m}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s})$, $1.63(3 \mathrm{H}, \mathrm{s}), 1.70-1.50(3 \mathrm{H}, \mathrm{m}), 1.42-1.36(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-DMSO) $\delta 167.2,155.4,154.3,146.3,136.0,135.6$, $130.4,130.0,119.6,119.2,117.1,115.7,113.3,53.0,49.2,45.8$, 40.7, 39.9*, 39.4*, 39.0*, 33.4, 26.3, 25.4, 25.30, 25.28, 17.9, 17.8. (3 peaks observed at $39.9,39.4$, and 39.0 by Witherup and coworkers ${ }^{1}$ could not be unequivocally assigned as they were underneath the DMSO peak, but these 3 peaks could be detected in the DEPT data we carried out on synthetic 1a). MS (SIMS, 3-nitrobenzyl alcohol) m/z $722\left(100,\left[\mathrm{M}-\mathrm{H}+2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\right), 608$ (75, $\left[\mathrm{M}-\mathrm{H}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$), 494 ($6,[\mathrm{M}-\mathrm{H}]$). HRMS (SIMS, 3-nitrobenzyl alcohol) calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H}$, free guanidine) 494.3241 , found 494.3267. $[\alpha]^{23}{ }_{\mathrm{D}}-164.8$ (c 0.33, MeOH) $\left[\right.$ lit. natural $[\alpha]_{\mathrm{D}}-8.5(c \quad 0.01, \mathrm{MeOH}),{ }^{1}[\alpha]^{29} \mathrm{D}-164.3$ (c 0.14 , $\left.\mathrm{MeOH}),{ }^{5 \mathrm{f}}[\alpha]^{20_{\mathrm{D}}}-122.7(c 0.31, \mathrm{MeOH})^{5 \mathrm{Sde}}\right]$.

Methyl (3aS,3bS,9bS)-4-\{3-[1,2-Di(tert-butoxycarbonyl)-3-(3-methylbut-2-enyl)guanidino]propyl\}-1,5-bis(2,2,2-trichloroet-hoxycarbonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quin-oline-8-carboxylate (31b). According to the procedure given for the guanylation reaction of 29a, reaction of $\mathbf{2 9 b}(51.1 \mathrm{mg}, 0.056$ $\mathrm{mmol})$ with 3-methyl-2-buten-1-amine ${ }^{28}(71.5 \mathrm{mg}, 0.84 \mathrm{mmol})$ gave 31b (53.2 mg , quant.) as a colorless oil. IR $\nu_{\text {max }}$ (neat) $\mathrm{cm}^{-1} 3423$, 2980, 1715, 1643, 1615. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 9.31(1 \mathrm{H}, \mathrm{s}), 8.53$ $(2 / 3 \mathrm{H}, \mathrm{s}), 8.42(1 / 3 \mathrm{H}, \mathrm{s}), 7.92(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 5.30-5.20(1 \mathrm{H}, \mathrm{m}), 5.20-5.10(1 \mathrm{H}, \mathrm{m}), 5.10-5.00(1 \mathrm{H}$, $\mathrm{m}), 4.90-4.68(4 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.80-3.30(7 \mathrm{H}, \mathrm{m}), 2.72-2.54$ $(1 \mathrm{H}, \mathrm{m}), 2.26-2.10(1 \mathrm{H}, \mathrm{m}), 2.00-1.80(1 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{s})$, $1.65(3 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.70-1.40(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 166.3,154.7,153.2,137.8,132.3,131.9,129.4$, 128.7, 127.1, 124.4, 118.6, 95.7, 95.1, 82.5, 79.3, 77.2, 75.3, 75.0, $55.6,54.7,53.8,52.1,46.8,45.7,45.4,41.7,29.7,29.5,28.2,28.1$, 27.9, 25.7, 25.6, 18.0. SIMS calcd for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{Cl}_{6} \mathrm{~N}_{5} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})$ 948.1842, found 948.1827. $[\alpha]^{25} \mathrm{D}-32.3\left(c \quad 0.51, \mathrm{CHCl}_{3}\right)$. The presence of rotamers precluded a comprehensive assignment of all proton and carbon resonances.
Methyl (3aS,4S,9bS)-1-[N^{\prime}-(tert-Butoxycarbonyl)- N-(3-meth-ylbut-2-enyl)carbamimidoyl]-4-\{3-[1,2-di(tert-butoxycarbonyl)-3-(3-methylbut-2-enyl)guanidino]propyl\}-2,3,3a4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-8-carboxylate (33b). To a solution of 31b $(38.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ were added Zn powder
$(10.5 \mathrm{mg}, 0.16 \mathrm{mmol})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(0.3 \mathrm{~mL})$ under a nitrogen atmosphere at room temperature and the resulting mixture was stirred at room temperature. Zn powder ($50.0 \mathrm{mg}, 0.76 \mathrm{mmol}$) was added every 1 h during 6 h . After being stirred at room temperature for 6 h , the reaction mixture was filteted through a pad of Celite and filtrate was diluted with $10 \% \mathrm{NaOH}$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure to afford crude amine. To a solution of the crude amine in DMF (2.0 mL) were added isothiourea $32^{5}(12.4 \mathrm{mg}, 0.048 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.02 \mathrm{~mL}, 0.12$ $\mathrm{mmol})$ under a nitrogen atmosphere at room temperature. After the mixtue was stirred at room temperature for $10 \mathrm{~min}, \mathrm{HgCl}_{2}$ (13.0 $\mathrm{mg}, 0.048 \mathrm{mmol}$) was added. After being stirred at room temperature for 2 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with brine, dried over MgSO_{4}, and concentrated at reduced pressure. The residue was purified by PTLC (AcOEt) to afford 33b $(21.1 \mathrm{mg}$, 65%) as a sticky oil. IR $v_{\max }$ (neat) $\mathrm{cm}^{-1} 3310,2977,2932,1709$, 1609. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 7.99(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}$, dd, $J=9.0,2.0 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{d}, J=$ $7.5 \mathrm{~Hz}), 5.54-5.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.27(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0 \mathrm{~Hz}), 5.22$ $(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}), 3.82-3.76$ $(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.76-3.70(2 \mathrm{H}, \mathrm{m}), 3.70-3.60(1 \mathrm{H}, \mathrm{m})$, $3.54-3.44(1 \mathrm{H}, \mathrm{m}), 3.44-3.30(3 \mathrm{H}, \mathrm{m}), 2.36-2.28(1 \mathrm{H}, \mathrm{m})$, $2.10-1.80(2 \mathrm{H} . \mathrm{m}), 1.74(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.64$ $(3 \mathrm{H}, \mathrm{s}), 1.80-1.60(4 \mathrm{H}, \mathrm{m}), 1.51(9 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.47(9 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 167.4,162.1,161.7,146.2,137.8,137.0$, $131.9,130.0,120.4,118.7,118.5,118.3,113.7,82.8,79.3,77.5$, 53.2, 51.4, 50.0, 46.7, 42.5, 41.9, 39.7, 32.2, 30.3, 29.7, 28.5, 28.2, 28.1, 28.0, 25.61, 25.58, 24.9, 18.0, 17.97. SIMS calcd for $\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H}) 810.5125$, found 810.5121. [$\left.\alpha\right]^{28}{ }_{\mathrm{D}}-125.9$ (c $0.52, \mathrm{CHCl}_{3}$).
(-)-Martinellic Acid (1a). According to the procedure given for hydrolysis and deprotection of 33a, 33b ($33.2 \mathrm{mg}, 0.041 \mathrm{mmol}$) was converted into $1 \mathbf{1 a}(15.8 \mathrm{mg}, 56 \%)$.

Acknowledgement. We are grateful to acknowledge the research Grants-in-Aid for Scientific Research (B) (to T.N.) and (C) (to O.M.) from the Japan Society for the Promotion of Science (JSPS) and Scientific Research on Priority Areas (A) (to T.N.) from the Ministry of Education, Culture, Sports, and Technology. We also acknowledge a research grant from the Science Research Promotion Fund of the Japan Private School Promotion Foundation. We particularly thank Drs. Sheo Bux Singh, Steven M. Pitzenberger, and Nobuyoshi Yasuda of Merck Research Laboratories for providing ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of natural martinellic acid and their helpful suggestions.

Supporting Information Available: Experimental procedures, compound characterizations except for the Experimental Section, copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for selected compounds and natural martinellic acid, copies of MASS for $\mathbf{5 b}$ and 20, X-ray crystallographic data, and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

[^9]
[^0]: * Corresponding author. Phone: +81-78-441-7554.Fax: +81-78-441-7556.
 ${ }^{+}$Kobe Pharmaceutical University.
 * Osaka University.
 \$ The University of Manchester.
 (1) Witherup, K. M.; Ransom, R. W.; Graham, A. C.; Bernard, A. M.; Salvatore, M. J.; Lumma, W. C.; Anderson, P. S.; Pitzenberger, S. M.; Varga, S. L. J. Am. Chem. Soc. 1995, 117, 6682-6685.
 (2) Gentry, A.; Cook, K. J. Ethnopharmacol. 1984, 11, 337-343.

[^1]: (3) Nyerges, M. Heterocycles 2004, 63, 1685-1712, and references cited therein.

[^2]: (13) (a) Hewson, A. T.; Hughes, K.; Richardson, S. K.; Sharpe, D. A.; Wadsworth, A. H. J. Chem. Soc., Perkin Trans. 1 1991, 1565-1569. (b) Hechavarria Fonseca, M.; Eibler, E.; Zabel, M.; Konig, B. Tetrahedron: Asymmetry 2003, 14, 1989-1994.
 (14) (a) Sweet, F.; Brown, R. K. Can. J. Chem. 1967, 45, 1007-1011. (b) Barker, S. A.; Brimacombe, J. S.; Foster, A. B.; Whiffen, D. H.; Zweifel, G. Tetrahedron 1959, 7, 10-18.
 (15) (a) Fukuyama, T.; Cheung, M.; Jow, C.-K.; Hidai, Y.; Kan, T. Tetrahedron Lett. 1997, 38, 5831-5834. (b) Tsunoda, T.; Yamamoto, H.; Goda, K.; Itô, S. Tetrahedron Lett. 1996, 37, 2457-2458. (c) Henry, J. R.; Marcin, L. R.; McIntosh, M. C.; Scola, P. M.; Davis Harris, G.; Weinreb, S. M. Tetrahedron Lett. 1989, 30, 5709-5712, and references cited therein.

[^3]: (16) In addition to 2a-c, bicyclic amino ester (3\%) was obtained by column chromatography and characterized as shown in the Supporting Information.
 (17) (a) In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany, 2004. (b) In Palladium in Heterocyclic Chemistry; Li, J., Gribble, G., Eds.; Elsevier: Oxford, UK, 2007, and references cited therein.
 (18) (a) Browning, R. G.; Badarinarayana, V.; Mahmud, H.; Lovely, C. J. Tetrahedron 2004, 60, 359-365. (b) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101-1104. (c) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421-7428.
 (19) Keusenkothen, P. F.; Smith, M. B. J. Chem. Soc., Perkin Trans. 1 1994, 2485-2492.

[^4]: (20) For recent reviews on the use of SmI_{2}, see: (a) Kagan, H. B. Tetrahedron 2003, 59, 10351-10372. (b) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371-3403.
 (21) (a) Boiron, A.; Zillig, P.; Faber, D.; Giese, B. J. Org. Chem. 1998, 63, 5877-5882. (b) de Gracia, I. S.; Bobo, S.; Martin-Ortega, M. D.; Chiara, J. L. Org. Lett. 1999, 1, 1705-1708. (c) Bobo, S.; de Gracia, I. S.; Chiara, J. L. Synlett 1999, 1551-1554. (d) Riber, D.; Hazell, R.; Skrydstrup, T. J. Org. Chem. 2000, 65, 5382-5390. (e) Nicolaou, K. C.; Rao, P. B.; Hao, J.; Reddy, M. V.; Rassias, G.; Huang, X.; Chen, D. Y.-K.; Snyder, S. A. Angew. Chem., Int. Ed. 2003, 42, 1753-1758. See also ref 22.
 (22) Marco-Contelles, J.; Gallego, P.; Rodríguez-Fernández, M.; Khiar, N.; Destabel, C.; Bernabé, M.; Martínez-Grau, A.; Chiara, J. L. J. Org. Chem. 1997, 62, 7397-7412.

[^5]: (23) Soai, K.; Ookawa, A. J. Org. Chem. 1986, 51, 4000-4005.

[^6]: (24) (a) Kocián, O.; Ferles, M. Collect. Czech. Chem. Commun. 1978, 43, 1413-1430. (b) Baumgarten, H. E.; Beckerbauer, R.; Debrunner, M. R. J. Org. Chem. 1961, 26, 1539-1546.

[^7]: (25) Albrecht, C.; Barnes, S.; Böckemeier, H.; Davies, D.; Dennis, M.; Evans, D. M.; Fletcher, M. D.; Jones, I.; Leitmann, V.; Murphy, P. J.; Rowles, R.; Nash, R.; Stephenson, R. A.; Horton, P. N.; Hursthouse, M. B. Tetrahedron Lett. 2008, 49, 185-188.
 (26) Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider, R.; Fort, Y. Org. Lett. 2003, 5, 2311-2314.
 (27) Kim, H.-O.; Mathew, F.; Ogbu, C. Synlett 1999, 193-194.
 (28) Jordis, U.; Grohmann, F.; Küenburg, B. Org. Prep. Proced. Int. 1997, 29, 549-560.
 (29) Witherup, K. M.; Ransom, R. W.; Varga, S. L.; Pitzenberger, S. M.; Lotti, V. J.; Lumma, W. J. U.S. Patent 5288725, 1994; Chem. Abstr. 1994, 121, 91779s.

[^8]: (30) The natural martinellic acid NMR is used with permission of Merck \& Co., Inc., Whitehouse Station, NJ, USA.

[^9]: JO800560P

